
ECE575 Computer Architecture Student: Mihir Kavishwar
Lab 4: Out-of-Order RISCV Processor – Reorder Buffer
April 9, 2023

1 Abstract
In this lab I implemented a Reorder Buffer (ROB) for a single issue, three wide, Out-of-Order
superscalar processor. We were given the code for a I2O2 processor and had to convert this into
an I2OI processor by building a ROB. I also added a test which failed with on the I2O2 processor
but passed on the I2OI processor. Finally I evaluated the performance of the processor on the
benchmark programs and compared it with the long processor.

2 Design
I designed the ROB as per the table 1 given in the lab handout - we have 16 entries and each
entry has a valid bit, a pending bit and a physical register address. Thus three register arrays
were defined to implement this table. I defined the head and tail pointers to keep track of the
oldest entry ready to commit and newest entry ready to be allocated. I defined an additional
signal called rob empty to indicate whether the ROB is empty. If the tail pointer and the head
pointer were ever equal and the ROB was not empty, that indicated that the ROB was full and the
rob alloc req rdy is then set to 0 to stall the processor.

3 Testing Methodology
Let MUL pipe be X0, X1, X2, X3; MEM pipe be Y0, Y1; ALU pipe be Z0.

3.1 Test 1

1 li x1, 1 F D Y0 Y1 W c
2 li x2, 2 F D Y0 Y1 W c
3 li x4, 3 F D Y0 Y1 W c
4 li x5, 4 F D Y0 Y1 W c
5 mul x3, x1, x2 F D X0 X1 X2 X3 W c
6 add x3, x4, x5 F D Z0 W r r r c
7 add x7, x1, x0 F D Z0 W r r r c
8 add x8, x2, x0 F D D Z0 W r r c
9 add x9, x4, x0 F F D Z0 W r r c
10 add x6, x1, x3 F D Z0 W r r c

Table 1: TEST CHECK EQ(x6, 8)

This test:

1. Fails when values commit in the wrong order but passes when ROB is present because of
WAW hazard between instructions 5 and 6 and RAW hazard between instructions 10 and 6

2. Has a value which has to be bypassed out of the ROB because instruction 6 has not com-
mitted when x3 is read by instruction 10

3.2 Test 2

1 li x1, 1 F D Y0 Y1 W c
2 li x2, 2 F D Y0 Y1 W c
3 li x4, 3 F D Y0 Y1 W c
4 li x5, 4 F D Y0 Y1 W c
5 mul x3, x1, x2 F D X0 X1 X2 X3 W c
6 add x3, x4, x5 F D Z0 W r r r c
7 add x7, x1, x0 F D Z0 W r r r c
8 add x8, x2, x0 F D D Z0 W r r c
9 add x6, x1, x3 F F D Z0 W r r c

Table 2: TEST CHECK EQ(x6, 8)

This test has the same WAW scenario as test 1 but nevertheless executes correctly on both the
original and finished processor because instruction 5 hasn’t yet written back when instruction 9
is in execute.

4 Evaluation

riscvlong riscvooo
cycles IPC # cycles IPC

bin-search 1678 0.709774 1709 0.696899
cmplx-mult 2550 0.734510 2600 0.720385
masked-filter 4916 0.833605 5849 0.700633

vvadd 471 0.961783 511 0.886497

Table 3: Simulation results for benchmark programs

5 Discussion
The long processor has slightly higher IPC than the out-of-order processor for every benchmark.
This is because the out-of-order processor still has in-order issue and in-order commit. Thus the
processor stalls every time there are RAW hazards and the execution of the previous instruction
has not to bypass values, just like the long processor. The slightly additional number of cycles
can be due to the extra commit stage.

2

6 Figures

Figure 1: ROB

3

