ECE575 Computer Architecture Students: Anna Eaton

Project: RISCV Vector Processor Mark Castellano
May 9, 2023 Mihir Kavishwar
1 Abstract

This project aims to implement a RISC-V vector processor, which is a type of processor designed
to handle vector-based computations efficiently. The project focuses on implementing the RISC-V
Vector Extension (RVV), which is a standard extension to the RISC-V instruction set architecture
that enables vector operations, to our 7-stage RISC-V scalar pipeline. The RVV extension includes
a set of vector registers, vector memory access instructions, and vector arithmetic instructions.
The hardware design involves developing a custom processor core that supports the RVV exten-
sion, including the vector register file and associated hardware logic to enable vector operations.
The software design includes developing an assembler and a compiler that can generate code that
uses the RVV extension !. The project will involve simulating and testing the processor design us-
ing a variety of benchmarks and test programs. The goal is to demonstrate that the RISC-V vector
processor can perform vector operations more efficiently than a traditional scalar processor.

2 Design

Our goal was to implement the RISCV Vector ISA. Our vector register file stores 32 vectors, each
64, 32-bit elements long. We also have a register to store the intermediate value from a multiply-
accumulate instruction and a register to store the length of the vector. In RISCV parlance, our
ELEN = 32 bits, our VLEN = 64 x 32 = 2048 bits, we only allow SEW = 32 bits, LMUL = 1, and
we used the undisturbed mask/tail setting, making all other settings illegal. We get performance
from increasing the number of lanes in our pipelined processor such that we can operate on 4
vector elements each clock cycle. This requires our vector register file to have 4x the number of
ports compared to the scalar register file. We also have more ports on our data memory so that
we can load and store 4 elements of data each clock cycle.

We only implemented a subset of the instructions from the RISCV ISA. We implemented three
categories of instructions: configuration-setting, strided load and store, and integer arithmetic.
The configuration-setting instructions are vsetvli,vsetivli, and vsetvl. The strided
load and store instructions are vle32.v,vse32.v,vlse32.v, and vsse32.v. The
vector integer arithmetic instructions are vadd.vv,vsub.vv, vmul.vv,vmulh.vv,
vmulhu.vv,vmulhsu.vv,vmacc.vv,vnmsac.vv,vmadd.vv, and vnmsub.vv.
More information can be found in Table 1. We chose to implement these instructions after we
compiled two of the benchmark files from previous assignments and saw which instructions we
needed to implement in order to run those benchmarks. We did this with the help of Jinzheng,
who generously helped us make a vector compiler that we used to get the instructions we needed.

While the datapath only contains 4 lanes, the vector register file can store vectors as long
as 64 elements. To compute a vector operation with a vector longer than the number of lanes,

'"The compiler and assembler were developed by Jinzheng Tu, a senior graduate student in Prof. Wentzlaff’s group

Table 1: RISC-V Vector Instructions

Instruction Description
vsetvl set VLR from register
vsetvli set VLR with 12-bit immediate
vsetivli set VLR with 5-bit immediate
vle32.v 32-bit unit-stride load
vse32.v 32-bit unit-stride store
vlse32.v 32-bit stride load
vsse.32.v 32-bit stride store
vle32.v 32-bit unit-stride load
vse32.v 32-bit unit-stride store
vlse32.v 32-bit strided load
vsse32.v 32-bit strided store
vadd.vv vector-vector integer add
vsub.vv vector-vector integer subtract
vmul.vv vector-vector signed multiply (low bits)
vmulh.vv vector-vector signed multiply (high bits)
vmulhu.vv vector-vector unsigned multiply (high bits)
vmulhsu.vv | vector-vector signed/unsigned multiply (high bits)
vmacc.vv integer multiply-add, overwrite addend
vnmsac.vv integer multiply-sub (overwrite minuend)
vmadd.vv integer multiply-add (overwrite multiplicand)
vnmsub.vv integer multiply-sub (overwrite multiplicand)

we stall the Fetch stage once a vector instruction has entered the Decode stage. Then, we send
4 elements from the vector to the Execute stage every clock cycle, and stop stalling the Fetch
stage once we have sent the entirety of the vector down the pipe. If the vector length is not a
multiple of 4, we only enable the vectorlength%4 lanes to write to memory when the last group
of elements is sent down the pipe.

One challenging instruction we wanted to implement was multiply-accumulate. This instruc-
tion multiplies two vectors and then adds the destination vector to the product. To execute this
instruction, we essentially treated it as two separate instructions. First, we performed vector mul-
tiplication and stored the result in a 33rd vector register called the Intermediate Register. Then,
we added the vector in the Intermediate Register to vector destination register and stored the
result in the vector destination register.

3 Testing Methodology

We wanted to reuse a lot of the testing suite from previous projects so we could directly compare
this processor to previous projects. We generated . vmh files of ubmark-cmplx-mult.C
and ubmark-vvadd with a RISCV Vector compiler and assembler. After verifying that the
scalar operations still worked properly, we tested the vector instructions on these two bench-

marks.

During this process we had to redesign the testing framework with our own six-ported mem-
ory unit, and also redo the base simulation so that we could access the amount of data parallelism
we needed out of both RF and memory.

Listing 1: Vvadd Compiled with Vector Instructions

100b8: 37 15 01 00 lui a0, 17

100bc: 13 05 05 00 mv a0, a0

100c0: 57 70 04 c¢5 vsetivli zero, 8, €32, ml, ta, mu
100c4: 07 64 05 02 vle32.v v8, (a0)
100c8: b7 15 01 00 lui a1, 17

100cc: 93 85 05 l1la addi al, al, 416
100d0: 87 e4 05 02 vle32.v v9, (al)
100d4: 13 06 00 00 li a2, O

100d8: 57 04 94 02 vadd.vv v8, v9, v8
100dc: 93 06 41 00 addi a3, sp, 4
100e0: 27 e4 06 02 vse32.v v8, (a3)
100e4: 93 06 41 02 addi a3, sp, 36
100e8: 13 07 05 02 addi a4, a0, 32
100ec: 07 64 07 02 vle32.v v8, (a4)
100f0: 13 87 05 02 addi a4, al, 32
100f4: 87 64 07 02 vle32.v v9, (a4)
100f8: 13 07 05 04 addi a4, a0, 64
100fc: 07 65 07 02 vle32.v v10, (a4)
10100: 13 87 05 04 addi a4, al, 64
10104: 87 65 07 02 vle32.v vil, (a4)
10108: 57 04 94 02 vadd.vv v8, v9, v8
1010c: 27 e4 06 02 vse32.v v8, (a3)
10110: 93 06 41 04 addi a3, sp, 68

4 Evaluation

The first goal of this project was to get some vector operations working without disrupting the
functionality of the scalar architecture. We successfully implemented strided loads and vector-
vector addition. However, they do not work with bypassing. These instructions alone are not
enough to execute the benchmarks, so we were unable to make direct comparisons to a scalar
processor.

5 Discussion

While we were unable to completely implement the vector co-processor, we reached a number
of intermediate checkpoints that we were satisfied with. First, our scalar processor maintained
complete functionality. Second, we successfully implemented the strided load instruction, which

demonstrates that we are able to broadcast data across the lanes of the pipeline and make strided
reads from memory. Third, we successfully implemented vector-vector integer add and subtract,
which demonstrates that we are able to iterate over the elements of a vector in the register file and
bring those elements into the lanes of a pipeline, and write back those elements into the vector
register file. Moreover, in implementing some vector instructions, we demonstrated the concept
that vector processors are more capable of exploiting innate parallelism in the data and this get
improved performance over scalar processors when executing vectorized code.

6 Figures

Fime
v_alu_out_xhl[127:0] =
v_opl_mux_out_Xhl[127:8] =
opl_mux_sel_Dhl[2:8] =
v_offe_phl[31:0] =
v_offl_pDhl[31:0]=
v_off2_phl[31:0]=
v_off3_phl[31:0] =
alu_fn_xhl[3:0]=
v_dmemresp_mux_out_0_Mhl[31:0] =
v_wb_mux_out_whl[127:0] = KKK KKK 0o 0 HHAK KK SEESO9FELCOEDACE+
rf_waddr_whl[4:0] =
rf_raddre_phl[4:0] =
v_execute_mux_out_X3hl[127:0] =
+_rdatal_byp_mux_out_Dh1[127:08] =
v_rdatal_byp_mux_sel_Dhl[3:0]=
rdatal_byp_mux_sel_Dhl[2:8] =
v_rf_rdatal phl[127:0]=
v_idx_Dhl[3:0] =
v_wdata_Mhl[127:8] =
v_wdata_Dh1[127:0] =
v_wdata_p[127:0] =
v_stall_bphl=
stall_Dhl=
stall_Fhl=
1memreq_rdy =
imemreq_msg_addr[31:0] =
pc_Fhl[31:8] =

Figure 1: Waveform of vvadd benchmark showing v8 being written by load instruction and then
later read by an add instruction

| |
T 00—
|
| . |
] Lo
iz “ i _
L —x{ br_targ 1 ||u_ o _I br_targ X = branch_cond_egine
F Pe_plys4{ D 5| _ . If alu_fn_D !
pe_mux_sel| P “ | £ i ”
—+ branch_cond_ItMu/ge/geu_X
| {
" | N |
| | |
| w |
| pel D regfile{read) (| alu | |
rst_vect | T i |
| | rs2
| | —
“ i TRm_sham alu_gut_|
= mm_u |
addr rdata _ W u_.cnvnu. data_Whi
imem o ” ”
L\ | dmemresp_mux_sel_M i
i s W
" _ addr | rdata ”
| | NOA _ I
" | — W
| | > |
I | dmem_msg_rw_M | |
_ | | ' i
Fetch (F) Decode (D) : Execute (X) ' Memory (M) PoX2 X3 ¢ Writeback (W)
4x . H
concat . pmuldiv m
L~] : : :
stride - L!-Ll : H
unit VIR alu_fn D .
i .m. .
vectar 0 E
1
regfileiread) o ﬂw.rgrx i > |
lv m alu_gut M ﬁmm:.__uxm res ._uxm ‘.mm"._zus__
,wmwn 0 (VT :_%,x.oc.ux m m m mad m
m . dmemresp_mux m H LE H
- =:__n_..._|.:==|«.=_|w ' H H
| ' H H
_ addr | rdata : H H
is_acc % wdata o m m m
dta_x \m/ m m m
i _ :
! v_pmuldiv | :

Figure 2:Datapath

