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Abstract—This report is a literature review of different
techniques which use low cost microelectromechanical system
(MEMS) sensors for attitude estimation of a rigid body. In ad-
dition to analysing these techniques, some MATLAB simulations
were carried out to validate the algorithms. All the papers in this
review attempt to solve the same attitude estimation problem but
for different applications and therefore differ in their approach.

Index Terms—Attitude estimation, MEMS sensors, Kalman
Filter

I. INTRODUCTION

Attitude of any rigid body describes how it is oriented
in space with respect to some inertial frame of reference.
There are different constructs to mathematically specify
attitude. The two common constructs are Euler angles and
Quaternions. Euler angles, typically denoted by (a, 8,7) or
(1,0, ¢), are defined by the unique sequence of rotations
undertaken by the object to reach the final orientation. Any
orientation can be achieved by a rotation about a single axis
and therefore it may not be intuitive to use Euler angles.
Quaternions, denoted by a + bi + ¢j + dk, use this fact and
capture the single axis rotation information in the form of
a mathematical object which extends the idea of complex
numbers.

Accurate attitude estimation is essential for a variety of

Fig. 1. Classic Euler angles geometrical definition. The xyz (fixed) system
is shown in blue, the XYZ (rotated) system is shown in red. Source: Wiki

applications such as in spacecrafts, aeroplanes, navigation
systems, land vehicles, smartphones, fitness trackers, etc.
The degree of precision required varies based the task at
hand. Almost all these applications make use of a class of
sensors called Microelectromechanical Systems (MEMS) to
get motion data. MEMS Accelerometers measure the proper

acceleration while MEMS gyroscopes measure the rate of
change of orientation along primary axes in body frame.
MEMS Inertial Measurement Units (IMUs) use a combination
of accelerometers, gyroscopes and sometimes magnetometer,
to report the same quantities. Over the past few decades,
there have been many improvements in the quality of sensors.
But precision comes at a cost, and in order to design low cost
systems we also need to think about software level solutions
which work with cheap sensors too. A recent article [§]
summarises the different sensor grades and the corresponding
prices. Some data from the same has shown in Table 1 and
Figure 2.

TABLE 1
BIAS STABILITY BY MARKET GRADE. SOURCE: ALISSA FITZGERALD [8§]

Grade Bias Instability (°/s)
Consumer 10
Automotive 1
Industrial 10
Tactical 1
Short-term 0.1
Navigation 0.01
Strategic 0.001

Performance classe

for Defense, Aerospa

(Source: High

Cost* ($)

0.01 0.5 15 40 100
Gyro bias instability (*/h)

Cost is indicative for comparison purposes

Fig. 2. IMU prices as defined by bias instability. Color indicates technology:
RLG = ring-laser gyro; HRG = hemispheric resonator gyro; FOG = fiber-optic
gyro. MEMS is gradually improving the grades it can achieve. Source: Yole
Développement [8]

As a undergraduate student interested in robotics, the sen-
sors that I typically use for my applications are consumer
grade. Therefore, the literature that I am reviewing [2] [3]
[4] [5] [6] [7] is focused on using such low cost sensors, not
above automotive grade. In Section II I discuss the different



kinematic models that were used in these works. In Section
IIT T have given a brief overview on well known filtering
techniques. In Section IV I have summarised how people have
used this knowledge of modelling and filtering to combine
different low-cost sensors and get accurate estimates. Lastly,
in Section V some of my simulation results are presented.

II. SYSTEM MODELLING

Popular orientation determination techniques with inertial
sensors include a propagating procedure with gyro sensor
data and an updating procedure with accelerometer data.
There are generally three principal methods to propagate the
orientation information from the differential form - Euler,
Direction Cosine Matrix (DCM) and Quaternion approaches
[1]. Publications [2] [3] use a Quaternion based approach
while [4] [6] use DCM based approach. [5] doesn’t use a
Kalman filter and therefore doesn’t need to define a state
vector. [7] assumes the system to be a Markov process and
defines a different kinematic model for the system. I have
included DCM equations here since they are used in my
simulations.

A. Direction Cosine Matrix based modelling

Apart from slight differences in notations, all works
which use DCM follow this modelling. The following set of
equations are taken from [6]

Let us denote the pitch, roll and heading (euler angles)
of a vehicle by 6, ¢ and v respectively. The relationship
between the Earth and Body coordinate frames X and X
can be expressed as

EX =R.PX
where R is the rotation matrix to rotate any vector in the body

coordinate frame (°X ) into the Earth coordinate frame (¥X).
This rotation matrix is given by

cpcl  cpslsp — shep  cpsbed + sipso
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where ¢ and s denote the cos and sin operations. We observe
that the last row of the rotation matrix does not contain the
yaw angle and we can calculate pitch and roll angles using
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where R;; denotes the (4,7)!" element of R. In order to
estimate v, a magnetometer sensor is also required. In typical
applications we only care about pitch and roll, accelerometer
and gyroscope prove to be sufficient. We define our state vector
at time t as

R31

Rso

R

Xy =

Note that in the above equation, the gravitational acceleration
vector (which accelerometers can compute) g, at any time t
as measured in the body coordinate frame is given by

g = 9%

This gives a measurement model. Now estimation algorithms
are used for to estimate this state vector by considering gyro-
scope measurements in process model. Sometimes gyroscope
biases are also included in the state vector as given in [1] [4].

B. Comparison

It has been known that the Euler approach of propagating
procedure is conceptually easy to understand but it is the
most computationally expensive and the state may reach
to singularity. Quaternion approach generally has the least
computations with only four variables propagated. Therefore,
it is very helpful in some applications which strictly demand
fast computation. But, it normally uses the first order ap-
proximation for its extended Kalman Filter to deal with its
nonlinear relationship so that its accuracy is traded off its
computational efficiency. Conversely, the unscented Kalman
filter has been used in order to improve its accuracy. In ad-
dition, Quaternion parameters have no physical interpretation
about the motion. This leads to the difficulty in connecting the
practical measurements with quaternion states in orientation
estimator. The Direction Cosine Matrix (DCM) method of
propagation transferring matrix has been known to show the
performance in-between compared with Euler and Quaternion
approaches. [1]

III. FILTERING ALGORITHMS

Once we have modelled our system in terms of state vector,
process equation and measurement equation, we are in the
domain of state estimation which is an extensively researched
area in itself. The most popular estimation algorithm is the
Kalman Filter (KF) as it gives optimal estimates in case of
linear systems. It has the following 3 basic steps:

1) Prediction Step - Using the process model we predict
the next state and covariance matrix associated with that
prediction

2) Kalman Gain Computation - In this step we compute
a term called Kalman Gain, which decides how much
weight should be given to our prediction as compared
to new measurement data

3) Update Step - On receiving a new measurement, we
update our prediction of state and covariance as per the
Kalman Gain computed previously, to incorporate the
additional information

Steps (2) and (3) can also be considered as a single Measure-
ment Update step.

[6] uses a KF to estimate attitude of a moving land vehicle.
The main limitation of Kalman Filter is that our system needs
to be linear. To overcome this limitation, Extended Kalman
Filter (EKF) can be used. The principle of EKF is very
similar to KF with they key differences being that prediction
step propagates the state through a non-linear model and
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Fig. 3. Flow diagram of the time-discrete Kalman filter. At each time step
k, the “Time Update” projects the current state estimation ahead in time.
The “Measurement Update” adjusts the projected estimation by an actual
measurement. [2]

state transistion matrices have to obtained by linearization to
propogate covariances. [2] [4] and [7] use EKF to get good
estimates.

Another variant of KF which has recently gained popularity
is Unscented Kalman Filter (UKF). It is a very computation
efficient algorithm and therefore can be used in latency critical
applications. In UKF we don’t need to calculate covariance
matrix through large matrix multiplications. Instead, we
generate a set of samples for our state vector, pass them
through the process model and compute the variances of
generated output samples. The choice of sampling is very
critical and hence there are some recommended steps to
be taken for generating those sample. [3] uses a UKF for
estimating attitude of an unmanned aerial vehicle.

Finally, we can choose not to use any variant of KF at
all and use some other idea. In [5], attitude estimation
was done using a Digital Complementary Filter. The
filter exploits the an important fact about accelerometers
and gyroscopes - the former suffers from high frequency
noise while the later suffers from low frequency drift.
Complementary Filter combines the readings of both sensors
over the frequency range that they work best individually.
Figure 4 communicates this idea.

IV. ATTITUDE ESTIMATION CASE STUDIES
A. Wearable Motion Capture System

[2] presents a modular architecture to develop a wearable
system for real-time human motion capture. An IMU node
called iNEMO, developed by STMicroelectronics was used in
their work. iNEMO is equipped with various MEMS sensors to
estimate the orientation of human body segments. In particular,
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Fig. 4. Block diagram of digital complementary filter system for MEMS
gyroscope and accelerometer [5]

they use a three-axis accelerometer, a three-axis magnetometer,
and a three-axis gyroscope. A quaternion based EKF algorithm
is used for fusing the information from all these sensors as
shown in Figure 6. Compared to commercial systems, the cost
of the proposed system was reduced by a factor of about eight
due to an embedded design based on MEMS sensors.
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Fig. 5. System data flow: each IMU computes 3-D orientation of the relative
segment and sends this information to the CU for motion reconstruction. [2]
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Fig. 6. Flow diagram of the quaternion-based EKF implemented [2]

B. Rigid Body on Moving Platform

Many outdoor activities, such as bicycling, driving, and
riding segways can be modeled as rigid bodies on a moving
platform. In [7], an attitude estimation scheme is established
for the rigid body-moving platform system by using two
gyroscopes and relative measurements between the rigid body
and the platform. The proposed scheme estimates the drift-free
attitudes of the rigid body and the partial drift-free absolute
attitudes of the platform without using any global information



or reference. The kinematic model plays an important role to
obtain the drift-free estimation of the absolute attitude angles.
The kinematic modelling and algorithm is quite mathemati-
cally intensive and therefore hasn’t been included here. Note
the important distinction here as compared to other works is
that accelerometer is not used.

I  Gyroscopes
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Fig. 8. Experimental setup [7]

C. Moving Land Vehicle

Currently, vehicles deploy expensive gyroscopes for attitude
determination. A low-cost MEMS gyro cannot be used because
of the drift problem. Typically, an accelerometer is used to
correct this drift by measuring the attitude from gravitational
acceleration. This is, however, not possible in vehicular ap-
plications, because accelerometer measurements are corrupted

Fig. 9. Directions of linear and angular velocities [6]

by external accelerations produced due to vehicle movements.
In [6], authors show that vehicle kinematics allow the removal
of external accelerations from the lateral and vertical axis
accelerometer measurements, thus giving the correct estimate
of lateral and vertical axis gravitational accelerations. An
estimate of the longitudinal axis gravitational acceleration
can then be obtained by using the vector norm property
of gravitational acceleration. Figure 10 shows the complete
algorithm.
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Fig. 10. Complete KF based algorithm [6]



V. SIMULATIONS

In order to compare I the performance of some of these
algorithms, I implemented 3 filters in MATLAB - KF, EKF
and UKF. Raw accelerometer and gyroscope measurements
were taken from my smartphone when in motion. I used
a DCM based model exactly as given in [4]. The paper
implements an EKF but the same model can be used to
implement KF and UKF as well.
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Accelerometer

. w
Process noise
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Fig. 11. A simplified block diagram of the DCM IMU filter. The covariance
computation has been hidden to simplify the work flow of the EKF filter. The
colored blocks are adjusted online. [4]

Noise was simulated in MATLAB to generate true states.
Figures 12 and 13 show how each algorithm managed to track
the true attitude.

Rl ph) degrees

Fig. 13. Estimating Pitch (6)

189 for k=1:999
190 % Linearization

191 A_EKF = delf_delx(x_hat_EKF(:,k),u(:,k),rea);

192

193 % Prediction

102 x_hat_predict_EKF(:,k) = process(x_hat_EKF(:,k),u(:,k), freq); % Non Linear
195 P_predict_EKF(:,:,k) = A_EKF*P_EKF(:,:,k)*A_EKF' + (Gamma"2).*Q;

196

197 % Kalman Gain Computation

198 R_EKF = meas_noise_cov(f(k+1),x_hat_predict_EKF(1:3,k),var_a, var_f, g);
199 LEKF(:,:,k) = P_predict_EKF(:,:,k)*H'/(H*P_predict_EKF(:,:,k)*H' + R_EKF);
00

201 % Update

202 e EKF(:,k) = y(:,k+1)-H*x_hat_predict_EKF(:,k);

203 x_hat_EKF(:,k+1) = x_hat_EKF(:,k) + L_EKF(:,:,k)*e_EKF(:,k);

204 P_EKF(:,:,k+1) = (eye(6)-L_EKF(:,:,k)*H)*P_predict_EKF(:,:,k);

205

206 % Normalization

207 norm_mat = cat(1, cat(2, eye(3)./norm(x_hat_EKF(1:3,ks1)),zeros(3,3)),cat(2,zeros(3,3),eye(3)));
208 3 = norm_jacobian(x_hat_EKF(:,k+1));

209 x_hat_EKF(:,k#1) = norm_mat*x_hat_EKF(:,k+1);

210 P_EKF(:,:,k+1)=0*P_EKF(:,:,k+1)*1";

PEE]

212 %Estimated Angles

213 theta_hat_EKF (k+1)=asin(-x_hat_EKF(1,k#1));

214 phi_hat_EKF (k+1)=atan2(x_hat_EKF(2,k+1),x_hat_EKF(3,k+1));

21 end

Fig. 14. For loop of code implementing EKF

From Figures 12 and 13 it is evident that EKF performs
better than both KF and UKF. KF performs better than UKF.
The same can also be concluded from Table II.

TABLE II
ROOT MEAN SQUARED ERROR COMPARISON

KF EKF UKF
RMSE for € (radians) | 0.0241 | 0.0189 | 0.0321
RMSE for ¢ (radians) | 0.0231 | 0.0155 | 0.0428
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