
EE705 Course Project: Hardware implementation of
Machine Learning classifiers

Mihir Kavishwar (17D070004)
Anubhav Agarwal (17D070026)

Shailee Suryawanshi (17D070049)
Prashant Kurrey (17D070057)

Abstract—This report summarizes our work in the area of
machine learning hardware. We attempted to implement two
popular machine learning models in hardware - Neural Network
and Support Vector Machine (SVM). Both of these implementa-
tions were tested on an open source data set of medical records
of patients with diabetes. Testing accuracy of 70% was achieved
for SVM classifier and 80% for Neural Net classifier. We wrote
the code in Verilog used Quartus tools for simulation.

Index Terms—machine learning, verilog, fpga, neural network,
support vector machine

I. INTRODUCTION

Over the last few years there has been growing interest in
exploring hardware based solutions to solve some of the
fundamental problems associated with Machine Learning
techniques. As the size of datasets and complexity of machine
learning models grows, the need for faster computation and
lower power consumption becomes extremely critical.

As shown in Figure 1 and 2, Machine Learning typically
consists of 2 parts:

1) Training
2) Inference

The former is usually not as time critical as the later if we
want to deploy a product in the field since training has to be
done only once. Therefore, our focus was only to implement
the trained models in hardware. This allows us to a high
level language like Python for training and directly used the
trained values of parameters. The hardware implementation
was done in Verilog HDL. Since Verilog has a module based
syntax, we started by writing modules for the simplest units
(adder, multiplier, etc) and then combined them to build
larger modules (neuron, svm kernel, etc). The design was
kept as configurable as possible so that we can tune the
hyperparameters such as neural net layer sizes, number of
support vectors in SVM, etc. IEEE 754 Full Precision floating
point representation was used to for data. The design can be
uploaded on an FPGA which can be then used in the field for
some application.

II. SUPPORT VECTOR MACHINE

The model was first trained in the Python and then the support
vectors and dual coefficients were exported to a hex file. The
hex file was imported in the hardware implementation as ROM
memory. The training was done by changing the parameter

Fig. 1. Training

Fig. 2. Inference

to get the maximum accuracy. The following parameters are
selected for SVM for this particular data set :
• Kernel: RBF
• γ: 0.01
• Number of Support Vectors: 385 with 8 features each

In SVM, the RBF kernel for binary classification is following:

Σ(yiαiK(x, xi)) + b > 0 : =⇒ class = 1

K(x, xi) = e−γ||X−Xi||2

The above equation consists of addition, subtraction and
multiplication. For all of this we have used the single 32
bit floating point adder and multiplier. The hardware SVM
first takes the normalised input which consists of 8 features,
32 bit each. Then one support vector is taken and all the
features are subtracted from the features of support vector
multiplied with each other to get the ||X − Xi||2. Then this
value is multiplied with −γ. This value acts as input to the
exponential term. For the computation of exponential term, we
implemented the Taylor series for exponential upto 15 terms
since the computations again boil down to multiplication and
addition.
Here the kernel K(x, xi) = e−γ||X−Xi||2 is multiplied with
the dual coefficient and similarly we will compute this for all

the support vectors and then add them together and finally
with the bias value. Finally we check the sign bit. Negative
number implies the class 0 , positive number implies class 1.

III. NEURAL NETWORK

For simplicity, a 3-layer neural network model was trained
in python. The number of neurons in each layer was kept
configurable. ReLU activation function was used in the hidden
layer. In the training model, at the output layer, sigmoid
activation was used for binary classification while softmax
was used for multi-class classification.

frelu(yi) = max(0, yi)

fsigmoid(yi) =
1

1 + e−yi

fsoftmax(yi) =
eyi∑N
j=1 e

yj

Since we are only interested in the final decision of the
classifier, sigmoid was replaced by step and softmax was
replaced by winner-take-all in the hardware implementation
of the trained model.
Fundamentally, feedforward neural networks are just matrix
multiplications interposed with non-linearities. For example,
the inference equation for a trained binary neural network can
be written as:

output = sign
(
w′l2frelu

(
w′l1xin + bl1

)
+ bl2

)
The weights and biases we imported from the trained model
directly. We implemented the adder, multiplier, multiply-and-
accumulate (MAC), ReLU and winner-take-all in hardware.
Figure 3 shows the RTL netlist of a NN model with 10 neurons
in hidden layer. Figure 4 shows the modules instantiated in a
single neuron.

IV. SIMULATION RESULTS

A testbench was written in verilog to compute the accuracy
of our hardware implementations. A hardwired verification
based methodology was followed. The testbench reads inputs
from an input-rom and output-rom, drives inputs in the DUT
and compares the dut output with the expected output stored
in output rom. A count is maintained of correctly predicted
outputs and accuracy is computed at the end based on what
fraction of dut outputs matched expected outputs.

TABLE I
TEST ACCURACY ON DIABETES DATASET [3]

Neural Net SVM
Test accuracy 67.2 % 80.2 %

Fig. 3. Neural Network RTL Netlist

Fig. 4. Hidden Layer Neuron RTL Netlist

Fig. 5. Simulation result showing test accuracy of both models

Fig. 6. Simulation result showing transient waveform of different signals

Accuracy for NN = 93
116 = 80.2%, SVM = 78

116 = 67.2%.

REFERENCES

[1] https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
[2] https://scikit-learn.org/stable/modules/generated/sklearn.neural network.MLPClassifier.html#sklearn.neural network.MLPClassifier
[3] https://www.kaggle.com/uciml/pima-indians-diabetes-database
[4] https://github.com/sudhamshu091/32-Verilog-Mini-

Projects/tree/main/Floating%20Point%20IEEE%20754%20Addition%20Subtraction

