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1 Introduction

Resistive Processing Units (RPUs), which are based on the principle of in-memory computing, offer a promis-
ing solution for energy-efficient and fast training of Deep Neural Networks (DNNs). RPUs can perform tasks
such as Matrix-Vector-Multiplication (MVM) and vector-vector outer product in a highly parallel fashion (
O(1) time complexity). An RPU is made up of resistive crossbars, which have Non-Volatile Memory (NVM)
element at every intersection to store a weight. Previous works have used varies NVMs such as Resistive
RAM, Phase Change Memory and Charge Trap Flash. In this project we want to explore if FeRAM can be
potentially used as a NVM in RPUs.

2 Theory

In this work, we use Ferroelectric FETs as the NVM element in the RPU. FeFETs have ferroelectric HfO2 in
the gate-stack whose polarization switching helps achieve conductance modulation. These are particularly
attractive for RPUs because of their compact 1T structure, fast and low voltage switching and CMOS
compatibility.

The ferroelectric materials apart from their high and low-VT states can take intermediate values of VT

due to partial switching of poalrization domains. For large area FETs it is possible to achieve a continuum of
intermediate VT states, making them particularly useful for synaptic weights in RPUs. Also the equivalence
between accumulative and one-shot switching shows that the FE nuclei generation does not easily decay
with time, thus can achieve desired VT switching using pulse-trains similar to that of a single pulse. This is
highly convenient because on-chip generation of single pulses with varying pulse-width is difficult.

3 Methods

We implemented an RPU in MATLAB for an image classification task on the MNIST dataset. The NN
model was same as that in [5] - a fully connected network with two hidden layers consisting of 256 and 128
neurons respectively. ReLU activation was used in the hidden layers while softmax activation was used for
the output layer. The model hyperparameters and simulation results are discussed on the next page. We
ran the simulations with two different device datasets - CTF and FeFET.

Hyperparameter Value
Update step size (α) 0.01

Weight scaling factor (k) 600α
Initial device conductance (g1,0, g2,0) ∼ U(0, 1)

Pulse train length PL 10
Input scaling factor C α

PL.∆+g(c).k

Table 1: Hyperparameters
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Figure 1: Training Accuracy

4 Results and Discussions

Figure 1 shows the dependence of training accuracy on the number of epochs for the cases of CTF(baseline-no
noise, σ/µ = 10%, σ/µ = 100%) and FeFET(σ/µ = 10%). It is observed that the training performance is
insensitive to noise even on increasing its strength, with not much difference between results of FeFET and
CTF. The testing accuracy is around 75% and the poor training accuracy is due to selection of hyperparamter.
The accuracy can be increased by changing the Neural net model and the parameter.

5 Future Work

Because of the randomness associated with the switching of multiple domains within FeFET, the device has
an intrinsic noise. If we can somehow exploit this inherent stochasticity to achieve the required stochastic
multiplication, our RPU would not need any external circuitry for stochastic pulse-train generation.

However, to achieve a stochastic multiplication of δi and xi we need to control the stochasticity of the
FeFETs based on δi and xi. This is not easy for a large-area FeFET where the noise is gaussian. Howver,
if we consider small-area FETs, we obtain an abrupt switching between the high and low-VT states which is
intrinsically stochastic. Thus the VT switching in this case is Bernoulli with a switching probability. For a
given pulse amplitude, the switching probability between the high and low-VT states can be controlled via
the pulse-width.

This provides the motivation to use the following architecture (Fig.2) of ultrascaled FeFETs at each
crosspoint. Here the 2 FeFETs in series have there input pulse-widths set such that the whole branch is ON
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Figure 2: Proposal to harness inherent stochasticity of ultrascaled FeFETs.

with a probability proportional to δi.xi. For a large enough N we can get ∆g ∝ δi.xi
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