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Abstract

Analog and mixed-signal processing for edge AI systems has been gaining
a lot of traction in recent years due to its promise of achieving higher en-
ergy efficiency and performance compared to traditional digital processing
approaches. This thesis explores the above idea and presents the circuit im-
plementation of a novel voice activity detection (VAD) system that performs
acoustic feature extraction in the analog domain and neural network based
classification in mixed-signal and digital domains. The feature extractor is
comprised of switched capacitor N-Path bandpass filters, comparator based
full wave rectifiers, switched capacitor lowpass filters, non-linear transform
circuits and analog multiplexers. The classifier comprises of one convolu-
tional neural network layer, which is implemented within a first order delta-
sigma modulator; ReLU, max pooling and fully connected layers, all of which
are implemented in the digital domain. All analog and mixed-signal circuit
blocks were designed up to transistor level schematics in UMC 65nm tech-
nology, while the digital circuits were implemented as functional modules in
Verilog-A. System and circuit level simulation results have been discussed,
along with challenges encountered, proposed solutions and future work.
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Chapter 1

Introduction

Automatic speech recognition (ASR) has become increasingly popular in re-
cent years and is widely used in smartphones, wearables and other internet
of things (IoT) devices. Complex tasks such as keyword spotting, speaker
verification and speech-to-text conversion are typically performed using ma-
chine learning (ML) algorithms that require significant computational power.
However, edge devices have severe energy constraints since they are powered
by small batteries and therefore cannot continuously run these algorithms.
State-of-the-art (SotA) systems overcome this issue by using the concept of
hierarchical detection - cascading a set of tasks with increasing complexity
so that the posterior stages are only activated by the previous stages in the
pipeline [12]. Only the first stage in the classifier cascade is always-on, thus
making the overall system much more energy efficient.

Figure 1.1: Voice activity detection application for keyword spotting and
speech-to-text conversion

A voice activity detector (VAD) identifies if the input audio signal is hu-
man speech or some other sound. In most SotA systems, VADs are used as
the first stage in the classifier cascade. They remain always-on and serve
as a wake up mechanism for the DSP blocks, which perform more advanced
tasks. Therefore, the power consumption of a VAD is extremely critical and
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CHAPTER 1. INTRODUCTION

can have a considerable impact on the battery life of a device. Moreover,
energy efficiency shouldn’t come at the expense of a significant accuracy
degradation because if a VAD fails to detect speech, it won’t wake up the
subsequent stages in the classifier chain, which perform advanced processing.

Several techniques for implementing energy efficient VADs have been dis-
cussed in the recent literature. Typical VADs (and most edge AI systems in
general) consist of two main parts [9]:

1. Feature Extractor - It converts the high dimensional raw input signal
into low-dimensional but dense features. Previous works have extracted
acoustic features such as Mel-frequency cepstral coefficients (MFCCs)
[8], [12], [15], [18]; input signal energies in different frequency bands [2],
[4], [9], [13], [19]; or non-linear spiking events based on band energies
[11], [20].

2. Classifier - It infers from the feature set input if the signal is: “speech”
or “non-speech”. Previous works have used different classifier models
such as decision trees [4], [13]; support vector machines [6], [10]; or
more commonly neural networks [8], [9], [11], [13], [15], [18], [19], [20].
Some works have used an energy thresholding based method [2], [14].

Feature

Extractor
Classifier

TrainerTraining

Labels

Sensor

Output

Figure 1.2: Key blocks of typical SotA edge AI systems

Classification algorithms employing supervised learning have to be trained
using labeled datasets to determine the values of the parameters that mini-
mize their loss functions. Since the classifier takes extracted feature data and
not the raw sensor data as the input, the training dataset must be generated
accordingly. The training can be done offline using a software model of the
feature extractor [11], [19], [11], [20] or online once the chip is taped out.

Traditionally, both feature extraction and classification were implemented
in the digital domain. This required using a high performance ADC imme-
diately in front of the sensor as shown in 1.3a. Recent works however have

2



CHAPTER 1. INTRODUCTION

shown that implementing the feature extractor in analog, as shown in 1.3b,
makes it very energy efficient, relaxes the specifications for the ADC and
relaxes the complexity of our classifier. Further, some of the computation
involved in the classifier can be performed within the ADC itself [3] as shown
in 1.3c. The classifier typically has to perform several Multiply and Accu-
mulate (MAC) operations and can be made very energy efficient using the
latest advancements in mixed-signal computing for neural network inference
[17]. The ADC can be avoided in this case as shown in 1.3a.

Feature
Extractor Classifier

Sensor

OutputADC
Digital

Digital

(a) Both feature extraction and classification in digital

Sensor

OutputADCFeature
Extractor

Analog
Digital

Classifier

(b) Feature extraction in analog and classification in digital

Classifier

Sensor

OutputADC DSP
Extractor
Feature
Analog

(c) Feature extraction in analog and classification within ADC and in digital

Sensor

Output
Analog
Feature

Extractor

Analog
Classifier

(d) Both feature extraction and classification in analog

Figure 1.3: Different ways in which edge AI systems can be implemented

This work proposes a novel VAD architecture employing analog acoustic
feature extraction and multiply-accumulate (MAC) computation technique
which implements the CNN operation within a delta-sigma ADC.
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Chapter 2

Overview of Relevant Concepts

2.1 Mel Spectrograms

A spectrogram is a visual representation of the frequency spectrum of a
signal as it varies over time [22]. Conceptually, to plot the spectrogram of a
continuous time signal, we need to perform the following steps:

1. Section the long signal into shorter frames using some windowing scheme

2. Compute the power spectral density (PSD) of the windowed signal
and plot it on the Y-axis using different color shades to represent the
magnitude

3. Stack the PSDs of successive time frames beside one another on the
X-axis

Figure 2.1: Spectrogram example. Source: Matlab documentation

4
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CHAPTER 2. OVERVIEW OF RELEVANT CONCEPTS

The Mel scale is a perceptual scale of pitches judged by listeners to be
equal in distance from one another [21]. The log spectrum on a mel frequency
scale (the mel log spectrum) is a more effective representation of the speech
signal than that on the linear frequency scale [1]. Thus, in audio speech
processing, we typically use mel spectrogram, which is a spectrogram where
the frequencies are represented on the mel scale. The formula to convert
from f hertz to m mels is:

m = 2595× log10

(
1 +

f

700

)

Figure 2.2: 12-filter Mel Filterbank between frequencies 30 Hz to 8 KHz

The frequency bands in a Mel Spectrogram are logarithmically spaced as
shown in Figure 2.2 and the transfer functions of filters are triangular on the
log scale. Figure 2.3 illustrates how the same audio signal can be represented
in two different ways.

5
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(a) Time domain signal

(b) Mel Spectrogram

Figure 2.3: Different representations of the same audio signal
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2.2 Neural Network Classifiers

Neural network based classification is one of the most widely used machine
learning techniques for applications such as computer vision, speech recogni-
tion, healthcare monitoring, etc. Artificial neural networks (ANNs) are made
up of tiny computational units called neurons (or perceptrons). A neuron
takes multiple inputs and produces a single output based on the network’s
weights and biases and the neuron’s activation function. During the train-
ing phase, the weights and biases are updated by the training algorithm to
minimize a specific loss function.

x1

x2

x3

w1

w2

w3

b

y = f(Σxiwi + b)

Figure 2.4: Neuron model. f represents the activation function, wi are the
weights and b is the bias.

Examples of activation functions:

1. Sigmoid : f(x) = 1
1+e−x

2. Rectified linear unit (ReLU) : f(x) = max(0, x)

3. Softmax : f(xi) =
exi∑N

j=1 e
xj

Several neurons are connected together to form a neural network. Differ-
ent architectures exist which are suitable for different applications -

1. Multi-layer Perceptron (MLP)

2. Convolutional Neural Network (CNN)

3. Recurrent Neural Network (RNN)

7
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Figure 2.5: Multi-layer perceptron neural network model. Source :
Dr. Michael Nielsen’s online book [7]

Figure 2.6: Convolutional neural network model. Source : Dr. Michael
Nielsen’s online book [7]
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2.3 N-Path Bandpass Filtering

N-Path filters have been studied in great detail in the past [5]. Figure 2.7
shows the key idea used in N-Path filters.

Figure 2.7: The fundamental principle used in an N-Path Bandpass Filter is
Downconversion + Lowpass Filtering + Upconversion = Bandpass Filtering

In N-Path filters, the several BPF blocks, as shown in Figure 2.7 are
connected in parallel and get cyclically turned on one after another. Figure
2.8 shows the block diagram of the complete N-Path filter.

...

S1

S2

SN

T

Vin Vout

SN

S1

S2

S1

S2

SN

.

.

.

.

.

.

.

.

.

Figure 2.8: N-Path filter block digram

The main disadvantage of the N-Path filter is significant harmonic dis-
tortion. The even harmonics can be eliminated by going for a differential
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topology. Further, the number of capacitors can be halved by sampling the
input on the same capacitor in two different phases. Figure 2.9 shows how
we can derive the final differential N-Path filter circuit from the original idea.

The center frequency is same as clock frequency (fc) while the 3 dB
bandwidth is given by

(
1

2πNRC

)
. N-Path Filters have the several advantages

[5]:

1. High quality factor is easily achievable

2. They are extremely tunable since the center frequency of the filter is
determined by the clock frequency

3. Energy efficiency is high because power is required only to drive switches

...

S1

S2

SN

T

Vin Vout

SN

S1

S2

S1

S2

SN

Vin Vout

SN

S1

S2

...

S1

S2

SN

R

R

R

C1

CN

C2

Vin

Vout

...

S1

S2

SN

R

C1

C2

...

S2

C1

S1

SN/2 + 1

C2

SN/2 + 2

SN

Vin+

Vin-

+Vout

Vout
-

R/2

R/2

CN

CN

SN/2

Figure 2.9: Derivation of differential N-Path Bandpass Filter from the origi-
nal conceptual diagram
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2.4 ∆Σ Modulation

∆Σ modulation is a data conversion technique in which the input signal is
sampled at a rate much greater than the Nyquist frequency (fs >> 2fb).
Oversampling reduces the quantization noise power in the signal band. Fur-
ther, the ∆Σ modulator shapes the quantization noise out of the signal band.
∆Σ analog to digital converters (∆Σ ADCs) are extremely popular in appli-
cations that demand high bit resolution, low area and low power.

Figure 2.10 shows the conceptual block diagram of ∆Σ modulator. A key
feature of this scheme is that with a single bit quantizer, we can get multi-bit
resolution.

+

-

Input

1-bit
DAC

−

+
∫ Digital

Filter

Integrator

Quantizer
PWM Output

N-bit Digital
Output

Figure 2.10: First order ∆Σ modulator block diagram

The delta-sigma operation can be realized in discrete time or continuous
time. The Z transform as shown in Figure 2.11 is commonly used to analyze
discrete time ∆Σ modulators.

1 - z-1

+

-

X(z) Y(z)

1-bit
DAC

z-1

Digital Output

E(z)

Figure 2.11: First order ∆Σ modulator Z-transform representation
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For this architecture:

Y (z) = z−1X(z) + (1− z−1)E(z)

Signal Transfer Function (STF) = z−1

Noise Transfer Function (NTF) = (1− z−1)

The circuit realization of the above architecture is shown in Figure 2.12.

−

+

−

+

C

C

φ1

φ1

φ2

φ2

VOUT

VIN

φ1

Figure 2.12: First order ∆Σ modulator circuit
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Chapter 3

Literature Survey

3.1 Power-Proportional Acoustic Sensing

This section is focused on the work Badami et al., JSSC ’16 [4] in which
they first introduced the idea of power-proportional sensing which has now
been adopted by several other SotA speech processing systems. Power-
proportional sensing paradigm aims to scale the power consumption of a
system in proportion to the complexity of the sensing task. Thus, power
hungry blocks in the signal processing tool chain are turned on only when
more complicated tasks need to be performed .

In this work, the first stage in the signal processing tool chain is a thresh-
old based always-on sound activity detector. On detection of a sound signal,
the analog feature extractor wakes up and converts the sound into a set of
acoustic features. Some of these features go in to the on-chip classifier which
infers if the sound signal is human speech or non-speech. If human speech is
detected, the classifers sends a signal to the microcontroller which turns on
to perform more complex sensing tasks with the complete feature set.

In the analog feature extractor, the input audio signal is decomposed into
a set of 16 features. Mathematically, each analog feature afi is defined as

afi = abs[Ax(t) ∗ hBPF
i ]

These features can be turned ON/OFF depending on their utility for a par-
ticular sensing task.

In the analog frontend, active gm-C filters are used for both band pass
and low pass functions. The rectifier and low pass filters are implemented in

13
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current mode to form an active averaging circuit. The decision tree classifier
is implemented in mixed-signal domain and uses a modified C4.5 machine-
learning algorithm.

Key idea of the paper : The power consumption of a system can be
scaled in proportion to the complexity of the sensing task by cascading blocks
in such a way that low complexity blocks wake-up high complexity blocks as
per the sensing task.

3.2 Event-based Acoustic Feature Extraction

This section is focused on the work Minhao Yang et al., JSSC ’19 [11]
and JSSC ’21 [20] which proposes a VAD architecture based on analog
spiking events. The feature extraction happens in the analog domain. A low
noise amplifier (LNA) first amplifies the input signal. The output of LNA is
fed into 16 different channels, each of which computes the signal energy in
some frequency band. Each channel is composed of a bandpass filter (BPF),
a full-wave rectifier (FWR) and an event driven ADC (ED-ADC). The work
presents a new 2nd-order BPF circuit which is based on super-source-follower
(SSF) topology. The ED-ADC encodes the analog information in spiking
events which can be measured by a counter. The counter output goes to
a neural network classifier implemented in the digital domain. The neural
network classifier produces a speech or non-speech output.

The recent paper [20] builds on their previous work and exploits some
non-linear properties of analog feature extractor. An additional clipping am-
plifier is used in the system.

Key idea of the papers : Event-driven analog to digital conversion
is useful because it combines the functions of integration and quantization.
Non-linearity of analog circuits can be exploited to our benefit in certain
applications.

3.3 Mixer-based Sequential Frequency Scan-

ning

This section is focused on the work Sechang Oh et al., JSSC ’19 [9] which
discusses a programmable acoustic signal processing system based on neu-
ral network classification. The authors propose using a sequential frequency
scanning technique instead of parallel feature extraction like in other works.
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This allows them to further reduce the power consumption to sub-µW levels.

Based on the same concept of power-proportional sensing discussed in
previous section, this system has two signal chains: an always-on ultra-low-
power (ULP) chain and a high performance (HP) chain that wakes upon
event detection by the ULP chain. In the ULP mode, the system con-
sumes just 142-nW while in HP mode it consumes 18-µW. The HP chain
consists of low-noise aplifier (LNA), programmable amplifier (PGA), ADC
driver (DRV), and ADC. The ULP chain consists of an additional mixer be-
tween LNA and PGA for down conversion so that the Nyquist rate is reduced
for subsequent blocks.

The amplifiers used in the AFE are based on capacitively coupled am-
plifier topology. The input transistors are biased using a DC common-mode
feedback between the input and output. This results in the AFE having a
bandpass nature, which is suitable for filtering acoustic signals that have sim-
ilar bandwidths. Therefore, the signal cannot be mixed down to DC in the
AFE itself and has to be downconverted in the digital backend. Moreover,
the impact of flicker noise of the PGA is also reduced when we divide the
downconversion process between AFE and digital backend.

The authors have reported measurement results with actual audio signals,
and not just electric analog audio signals. While the system performs well
on energy efficiency metric, it has significantly more latency than other SotA
systems due to its sequential processing architecture.

Key idea of the paper : Sequential frequency scanning enables ex-
tremely high energy efficiency since it doesn’t need a multi-channel filterbank,
but there is a trade off with latency.

3.4 Switched Capacitor Feature Extraction Fil-

terbank

This section is focused the work Villamizar et al., TCAS1 ’21 [19] which
demonstrates an application of N-Path switched capacitor bandpass filters
for acoustic feature extraction. N-Path filters have been studied in great de-
tail in past [5]. N-Path filters are highly tunable, can provide great quality
factor and are extremely energy efficient. These features makes them an ideal
candidate for acoustic feature extraction. The two main issues with N-Path
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Filters - presence of harmonic responses and folding, can be compensated by
the machine learning model of the classifier, as demonstrated in this paper.

The filterbank has 32 channels and simultaneously process the input audio
signal in different frequency bands. In a channel, the output of the bandpass
filter is fed into a butterfly mixer and then passed through a lowpass filter
to get dc output. The extracted features are used by the classification algo-
rithm. The paper discusses two classification tasks: baby-cry detection and
keyword spotting. For baby-cry detection, support vector machine (SVM)
algorithm is used. For keyword spotting, recurrent neural network (RNN)
algorithm is used.

The work also presents a software model of the analog circuits for Ma-
chine Learning dataset processing. Without such a model, the simulation
time for running transient simulations would be too high and we wouldn’t
be able to generate a sufficiently large training dataset.

Key idea of the paper : N-Path switched capacitor bandpass filters are
suitable for acoustic sensing applications because of their high tunability and
low power consumption. Harmonic responses and folding can be absorbed
by machine learning model of the classifier.

3.5 Energy-Quality Scaling

This section is focused the work Jinq Horng Teo et al., TCAS1 ’20 [13]
which investigates the trade off between energy and quality in VAD systems.
The paper discusses the use of Energy Quality (EQ) ‘knobs’ - which are es-
sentially some parameters in the system that can be tuned (either during
design-time or run-time) to vary the energy consumption and quality of the
system. Examples of EQ knobs in this work are - analog bias current, reso-
lution of the ADC and number of nodes in the decision tree classifier.

The paper also discusses the concept of energy-quality sensitivity. EQ
sensitivity is a way to quantify the amount by which the quality of a system
suffers and while energy savings increase on varying the EQ knobs. The EQ
sensitivity is defined by the expression

SQ
E

∣∣∣
X
=

∂Q

∂E
· E
Q

Therefore, it is desirable to have values of EQ sensitivity greater than 1,
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since the energy savings are greater than the quality degradation.

Key idea of the paper : Energy-Quality knobs can be inserted in a
system and optimization of these knobs allows us to attain minimum energy
consumption at a given accuracy target.

3.6 Fully Analog Voice Activity Detectors

This section is focused on the works Marco Croce et al. in JSSC ’21
[14] and Udita Mukherjee et al. in ISCAS ’21 [16] .

In [14], the authors demonstrate an end-to-end Analog VAD based on
computation of signal-to-noise ratio. The input signal is first amplified by a
programmable-gain amplifier (PGA). It is then squared using a circuit that
exploits the square relation between current and gate to source voltage in a
mosfet. The squared output is integrated and then averaged using a switched
capacitor based circuit. Finally, a thresholding circuit is implemented whose
reference voltage is periodically updated to adapt with the background noise.

This work, although seems to perform well under most circumstances,
can fail in various situations in my opinion. Since this work uses an SNR-
based Decision Rule, it won’t be able to distinguish speech signal from a high
amplitude non-speech signal such as clapping or knocking. Moreover, since
the noise level adapts to the background sound, it is possible that when a
continuous speech signal is present for a very long duration, the system starts
to classify it as noise.

In [16], the authors demonstrate a fully analog neural network based
VAD. The weights of the neural network are quantized to −1, 0 and +1.
The signal chain consist of a bandpass filter and rectifier bank, 2-layer neu-
ral network, lowpass filter and a decision slicer. Although the entire system
is implemented in analog, its power consumption is significantly greater than
SotA VADs which have digital classifiers.

Key idea of the papers : Complete analog implementation of VAD is
possible in energy thresholding based methods or quantized neural network
based methods.
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3.7 Matrix Multiplication within an ADC

This section is focused on the work Zhuo Wang et al., in TBCAS ’15 [3]
which proposes the idea of performing significant computation required for
classification tasks directly within an ADC with negligible energy overhead.
The work has novel contributions both on the algorithmic front and the cir-
cuit design front.

On the algorithmic front, the paper presents a way to combine linear
feature extraction and classification into a single matrix transformation. It
also demonstrates the benefits of using adaptive boosting (AdaBoost), which
is an algorithm than combines multiple weak classifiers to create a strong
classifier, over conventional classifiers like radial basis function (RBF) kernel
and support vector machine (SVM).

On the circuits front, the paper presents the implementation a SAR ADC
that can perform matrix multiplication with it’s analog inputs and digital
weights. A passive analog multiplication operation is realised by adding a
programmable divider in the feedback path of the SAR ADC. To increase the
multiplier range, mixed-signal floating point multiplication is implemented.

The utility of the above ideas is shown for two different applications:

1. Detection of cardiac arrhythmia from an ECG

2. Detection of gender from image pixels

Key idea of the paper : In resource constrained edge AI systems,
significant classification computation can be performed in the ADC itself
without much additional energy consumption. Algorithm-hardware co-design
can be extremely beneficial.
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3.8 Comparison Table

TCAS1 ’21 JSSC ’21 TCAS1 ’20 JSSC ’19 JSSC ’19 JSSC ’16

[19] [14] [13] [9] [11] [4]

Task KWS VAD VAD VAD VAD VAD

Technology 130nm 180nm 28nm 180nm 180nm 90nm

Band (Hz) 30-8k 300-6.8k NA 0-4k 100-5k 75-5k

Feature Analog Analog Digital Analog Events Analog

Feature SC-BPF, square, SC-Mix, gmC, gmC,

Extraction SC-Mix integrate FFT LPF, FWR, FWR,

Method DSP IAF LPF

Classifier SVM/NN SNR DT NN NN DT

Power (nW) 6200 760 6490 142 380 6000

Dataset Proprietary Proprietary Proprietary LibriSpeech Aurora4 NOISEUS

+ w/

NOISEX-92 DEMAND

Accuracy 92.4% 99.5% 87.3% 91.5% 85% 89%

Latency (ms) 26 32 8 512 10 < 100

Table 3.1: Comparison of SotA acoustic sensing chips. Accuracy is computed
over different datasets and therefore fair comparison is difficult. Power con-
sumption values are for entire system and not just analog frontend.
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Chapter 4

Proposed VAD Architecture

System level simulations in MATLAB with digital Mel-Filtering showed that
good accuracy for speech vs non-speech classification could be achieved with
just 12 filter channels and a relatively simple neural network based machine
learning model. A rectangular windowing scheme was employed to prevent
the loss of information and increase the filterbank’s throughput. Incorpo-
rating multiple contextual neighboring frames also helps in improving the
classification accuracy [2],[11]. Based on this assessment and after studying
relevant literature, the following novel VAD architecture is proposed:
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Channel 1
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Figure 4.1: Proposed VAD architecture. LNA = low noise amplifier, BPF =
bandpass filter, FWR = full wave rectifier, LPF = lowpass filter, NLT = non-
linear transform, MUX = multiplexer, DSM MAC = delta-sigma modulation
based multiply and accumulate, ReLU = rectified linear unit
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4.1 System Description

The system level block diagram of the proposed VAD architecture is shown
in Figure 4.1. The microphone converts the audio input into an electrical
signal. The LNA amplifies this signal to a sufficiently high amplitude for
further processing (in my design, I have not implemented an LNA since the
test input is sufficiently large). The output of LNA goes into 12 different
filterbank channels. Every channel has a bandpass filter, a full wave rectifier,
a buffer and 3 sub-channels, each of which consists of a low pass filter and
a non-linear transform circuit time-multiplexed to implement the windowing
scheme shown in Figure 4.2.

Figure 4.2: Description of how sub-channels process the input signal in dif-
ferent frames. Due to such arrangement, we get the throughput of the Fil-
terbank as 10ms although the frame length is 25ms.

The center frequencies and quality factors of the bandpass filters are ad-
justed to match the specification of a 12 channel mel-filterbank. Therefore,
every channel computes the energy of the input signal in the respective fre-
quency band in a time window. Thus the output of the analog feature extrac-
tor produces a spectrogram, with each column vector of dimension 12x1. We
use a CNN based machine learning classifier which takes this spectrogram as
input and produces a speech vs non-speech decision as shown in Figure 4.3.
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time

Binary Decision : 

Speech or Non-Speech

Figure 4.3: Illustration of classification algorithm used in the VAD system

The computation of the CNN layer is directly implemented within a ∆Σ
ADC and counters as shown in Figure 4.4.

Σ∆

MAC COUNTER

w1 w2 w3

x1

x2

x3

...

(# Counts) = (x1w1 + x2w2 + x3w3 + 0.5VDD) .
VDD

(# clock cycles)

Figure 4.4: Block diagram of MAC computation using ∆Σ modulation

Assuming all input voltage values are with respect to analog ground =
0.5VDD and the logic state voltages are 0 and VDD, the expression for number
of counts is given by:

(# Counts) =

((
N=3∑
i=1

xiwi

)
+ 0.5VDD

)
× # clock cycles

VDD

=⇒ (# Counts) = k

(
N=3∑
i=1

xiwi

)
+ b

where, k =
# clock cycles

VDD

, b = 0.5× (# clock cycles)

The bias parameter can be incorporated by changing the reset state of
the counter. The counter stores the current state unless it is reset. Thus we
can use the counter as an accumulator. When the next computation output
is available from the ∆Σ MAC, the counter adds it to the previously stored
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state, and thus, the final count is a MAC across time. The counter output is
fed to the subsequent layers in the ML model, all of which are implemented
in the digital domain.

(a) Inputs to ∆Σ MAC during first time window

(b) Inputs to ∆Σ MAC during second time window

(c) Inputs to ∆Σ MAC during third time window

Figure 4.5: Illustration of CNN computation of the real-time spectrogram
being generated by the AFE. The shaded boxes indicate the AFE outputs
selected by the MUX to be given as input to ∆Σ MACs.

Figure 4.5 illustrates which AFE outputs are selected as inputs to the ∆Σ
MACs. Note that the same three AFE outputs must be multiplied by three
different kernel columns depending on which CNN output is being computed.
To avoid storing AFE outputs in analog buffers, we use three ∆Σ MACs in
parallel, each of which takes a different kernel column as its weight input.
The results also need to be stored in three parallel counters. The counters
are then multiplexed and the result is sent to the next DSP block.
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4.2 Circuit Description

4.2.1 Bandpass Filters

VINP

VINN

VOUTP

VOUTN

φ0-SC

φ0-SC φ1-SC

φ1-SC

φ1 φ2 φ3 φ4

φ3 φ4 φ2φ1

Cu

Cu

kcCu kcCu kcCu kcCu

φ1

φ2

φ3

φ4

φ0-SC

φ1-SC

1/fc

Figure 4.6: Switched capacitor differential N-Path filter

The switched capacitor differential N-Path filter topology given in [19] was
used for implementing the mel-spaced bandpass filters. It’s center frequency
corresponds to the period of ϕ1, ϕ2, ϕ3 and ϕ4. Its quality factor can be
tuned by varying the parameter kc.

A range of 30Hz to 8KHz was chosen for the filterbank. Based on the
ideal Filterbank response shown in Figure 2.2, the required approximate
center frequencies and quality factors were determined and kc was chosen
accordingly. The Table 4.1 gives these specifications and chosen kc.
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Center Frequency, Bandwidth, Quality Factor, Scaling Factor,
fc (Hz) BW (Hz) Q = fc

BW
kc

180 100 1.8 1
360 120 3 1.5
600 145 4.14 2.25
860 176 4.89 2.5
1200 213 5.64 3
1600 257 6.22 3.25
2070 311 6.65 3.5
2650 377 7.03 3.75
3360 456 7.37 4
4200 552 7.61 4
5240 668 7.85 4.25
6500 808 8.05 4.5

Table 4.1: Specifications and chosen parameter kc for Band-Pass Filters in
the Mel-Filterbank

4.2.2 Full Wave Rectifier

−

+
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φ

φ

φ

φ

φ
+

-

CLK

VINP

VINN

VOUTP

VOUTN

Figure 4.7: Full wave rectifier schematic
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CLK

CLK CLK CLKCLK

VDD

VIN,P VIN,N

VOUT,N VOUT,P

Strongarm Latch Inverters RS Latch

Figure 4.8: StrongARM comparator schematic

For the full wave rectifier, the circuit topology used in [16] as shown in Figure
4.7 was chosen since it only has dynamic power loss. The working principle
of this rectifier is simple. The comparator constantly senses the input sig-
nal. If VINP > VINN then the input is connected as is to the output, else
the VINP is connected to VOUTN and VINN is connected to VOUTP . A Stron-
gARM comparator was used as shown in Figure 4.8. The main advantage
of StrongARM comparator is that it is a dynamic comparator, so there is
negligible static power loss. However, the StrongARM comparator suffers
from the issue of significant clock feedthrough. In this VAD architecture,
clock feedthrough is not a big issue since it just occurs during clock edges
and those high frequency spikes get filtered by the low pass filter.

4.2.3 Windowing Circuit

VIN

VOUT,1

VOUT,2

VOUT,3

S1

S1

S2

S2

S3

S3

S1

S2

S3

10 10 10 25

time (ms)

Figure 4.9: Windowing circuit schematic
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Every channel has to be split into three sub-channels as per the windowing
scheme described in Figure 4.2. A simple switch based implementation is
used to achieve this, as shown in Figure 4.9. Since the load at the input
pin is constantly changing, we need to precede this circuit with a unity gain
buffer stage.

4.2.4 Lowpass Filter

VIN VOUT

Cu CukbCu kbCu

φ1 φ1φ2 φ2

Figure 4.10: Second order switched capacitor low pass filter circuit schematic

To convert the rectified signal to a DC value, a second order lowpass filter is
implemented. The cutoff frequency is chosen such that the time constant is
sufficiently small so that the output settles within 15ms. The transfer of a
second order RC filter is given by

H(s) =
1

(1 + sRC)2

In this case, R = 1
fsCu

and C = kbCu. Therefore,

H(s) =
1

(1 + skb
fs
)2

I have chosen kb = 8 and fs = 6 KHz.
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4.2.5 Non-linear Transform

VDD

VINN VINP

VOUTP

VOUTN

R R

M1 M2

I I I

Figure 4.11: Non-linear transform circuit schematic

While analyzing the machine learning model in MATLAB, it was observed
that we get better accuracy by performing a non-linear transform (like loga-
rithm) on the extracted features. This non-linear transform should be mono-
tonic increasing and should compress large inputs to smaller outputs. The
exact shape of the transform is not very important and the training algorithm
ensures that weights and biases are updated appropriately to give an accu-
rate result. Therefore, the response of a simple differential pair was chosen,
which also ensures that the AFE output is bound within ±200 mV voltage
range.
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4.2.6 ∆Σ Multiply Accumulate
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Figure 4.12: ∆Σ multiply accumulate circuit schematic. ϕ1 and ϕ2 are non-
overlapping clocks.
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(b) Two stage operational transconduc-
tance amplifier schematic

Figure 4.13: Sub-circuits in ∆Σ MAC

Figure 4.12 shows the circuit which performs multiply-accumulate operation
within a ∆Σ ADC. The variable capacitors in Figure 4.12 are controlled
by the digital weights as shown in Figure 4.13a. A two stage operational
transconductance amplifier (OTA) was used with RC compensation as shown
in Figure 4.13b. The same StrongARM comparator shown in Figure 4.8 was
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also used here.

The working principle of the ∆Σ MAC circuit can be understood by
applying the charge conservation principle. Assume all voltages are with
respect to analog ground = 0.5VDD. Assume that VO = VOP = −VON .

−
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w3

x1P

x2P

x3P

-VO[n-1]

E[n-1]

VO[n-1] - E[n-1]
VO[n-1]

Figure 4.14: ∆Σ multiply accumulate circuit in ϕ1

Qtot.ϕ1 = −(x1p[n]w1 + x2p[n]w2 + x3p[n]w3)Cu

+ VO[n− 1]Cf − (VO[n− 1]− E[n− 1])Cf

= −(x1p[n]w1 + x2p[n]w2 + x3p[n]w3)Cu + E[n− 1]Cf

−

+

Cf

Cf

Ci

x1N

x2N

x3N

E[n]

VO[n] - E[n]
VO[n]

w1

w2

w3

Figure 4.15: ∆Σ multiply accumulate circuit in ϕ2
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Qtot.ϕ2 = −(x1n[n]w1 + x2n[n]w2 + x3n[n]w3)Cu − (VO[n]− E[n])Cf

Given that ϕ1 and ϕ2 are non-overlapping, we can apply charge conser-
vation principle and say Qtot,ϕ1 = Qtot,ϕ2 .

=⇒ −(x1p[n]w1 + x2p[n]w2 + x3p[n]w3)Cu + E[n− 1]Cf

= −(x1n[n]w1 + x2n[n]w2 + x3n[n]w3)Cu − (VO[n]− E[n])Cf

=⇒ VO[n]Cf = (x1[n]w1 + x2[n]w2 + x3[n]w3)Cu + (E[n]− E[n− 1])Cf

=⇒ VO[n] = (x1[n]w1 + x2[n]w2 + x3[n]w3)
Cu

Cf

+ E[n]− E[n− 1]

Where xi[n] = xip[n]−xin[n] , i ∈ {1, 2, 3}. Taking Z-transform of the above
equation, we get:

VO(z) = (X1(z)w1 +X2(z)w2 +X3(z)w3)
Cu

Cf

+
(
1− z−1

)
E(z)

This expression resembles the standard equation of first order ∆Σ mod-
ulator with signal and noise transfer functions given by:

STFX1 =
w1Cu

Cf

, STFX2 =
w2Cu

Cf

, STFX3 =
w3Cu

Cf

, NTF = (1− z−1)

Thus the ∆Σ multiply accumulate circuit implements the function shown
in Figure 4.4. In my design, I have chosen Cu

Cf
= 1

16
and 4-bit integer weights.

To allow for negative weights, I added an additional sign bit which inter-
changes xip and xin when HIGH. Therefore, the domain of weights is

weights ∈
{
−15

16
,−14

16
, . . . ,

14

16
,
15

16

}
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4.2.7 Digital Backend

The following digital blocks were implemented as functional modules in
Verilog-A in order to carry out simulations with Spectre simulator.

1. 10-bit up-counter

2. Register

3. Multiplexer

4. ReLU

5. Max pooling

6. Fully connected layer

7. Decision slicer
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Circuit Implementation and
Simulation Results

Figure 5.1: VAD System Cadence Implementation

Figure 5.2: Timing diagram of the VAD system. PHI1 is the clock to ∆Σ
MAC. RST C1, RST C2, RST C3 are active high reset signals to the three
parallel counters.

Figure 5.1 shows the top level view of the entire VAD system implemented
in Cadence. The LNA was not implemented since its specification would
depend on the microphone being used for testing. For simulation purposes,
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the input audio was directly imported from a WAV file. The timing diagram
is shown in Figure 5.2.

5.1 Analog Acoustic Feature Extractor

Figure 5.3: Analog acoustic feature extractor symbol
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Figure 5.4: Single channel in the analog acoustic feature extractor

Figure 5.3 shows the symbol of the analog acoustic feature extractor imple-
mented in Cadence. The feature extractor takes an audio signal as input
and produces 12 output features in every time window. Figure 5.4 shows the
implementation of single AFE channel.

35



CHAPTER 5. CIRCUIT IMPLEMENTATION AND SIMULATION
RESULTS

5.1.1 Bandpass Filter

Figure 5.5: Switched capacitor differential N-Path bandpass filter

Figure 5.6: Spectre periodic AC analysis of 12 mel-spaced N-Path bandpass
filters
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5.1.2 Comparator

Figure 5.7: StrongARM latch

Figure 5.8: RS latch
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Figure 5.9: Full comparator testbench

Figure 5.10: Comparator simulation results with 1 MHz sine wave input
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5.1.3 Rectifier

Figure 5.11: Full wave rectifier

Figure 5.12: Transient simulation of the rectifier
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5.1.4 Windowing

Figure 5.13: Windowing circuit

Figure 5.14: Transient simulation of the windowing circuit
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5.1.5 Lowpass Filter

Figure 5.15: Lowpass filter

Figure 5.16: Periodic AC analysis of the lowpass filter
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5.1.6 Non-linear Transform

Figure 5.17: Non-linear Transform circuit

Figure 5.18: Parametric analysis of non-linear transform circuit
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5.1.7 Full AFE Results

Test 1:

Figure 5.19: Audio input and the corresponding acoustic features extracted
by the analog frontend. The audio recording is of a human saying the word
‘yes’.

Figure 5.20: Comparison of ideal mel-spectrogram with mel-spectrogram
generated from AFE outputs
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Test 2:

Figure 5.21: Audio input and the corresponding acoustic features extracted
by the analog frontend. The audio recording is first of a human saying the
word ‘bird’ and then some drilling noise.

Figure 5.22: Comparison of ideal mel-spectrogram with mel-spectrogram
generated from AFE outputs
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5.2 ∆Σ Multiply Accumulate

Figure 5.23: ∆Σ multiply accumulate circuit

Figure 5.24: Two stage operational transconductance amplifier
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Open Loop DC Gain 57.27 dB
Unity Gain Frequency 708.4 MHz

Phase Margin 55.78o

3 dB Bandwidth 39.86 KHz

Table 5.1: Operational transconductance amplifier characterization

5.2.1 ∆Σ MAC and Counter Results

Figure 5.25: Testbench for analysing single ∆Σ multiply accumulate circuit

Figure 5.25 shows the testbench for analyzing the ∆Σ MAC circuit. The
input image block continuously generates a random input image with 12
rows. The analog multiplexer selects 3 of these inputs at a time and connects
them to the ∆Σ MAC block. The ∆Σ MAC output is connected to one of
the counters based on which image input rows were selected.
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Figure 5.26: ∆Σ MAC output being connected as input to different counters

Figure 5.26 shows the simulation results illustrating the working of the
∆Σ MAC based CNN computation as described previously in Figure 4.5.
The shaded regions represent the output of the ∆Σ MAC. Since the circuit
operates at 256 KHz clock frequency, the pulses are very closely spaced on
the given time scale and appear as shaded regions. Every multiply operation
happens in 256 clock cycles. Using the expression for the number of counts
given in section 4.1, the equation to convert from total MAC value (in mV)
to final count is given by:

Count1 = (MAC1 + 600)
256

1200

Count2 = (MAC2 + 600)
256

1200

Count3 = (MAC3 + 600)
256

1200

Counttot = Count1 + Count2 + Count3

Counttot = (MACtot)
256

1200
+ 384

The above simulation was carried out with a 12x3 random input image
and two different CNN kernels. Simulation results for both cases have been
given below.
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Input Image Input Image Input Image
Column 1 (mV) Column 2 (mV) Column 3 (mV)

-163 35 196
59 184 53
143 -56 34
72 75 65
13 -107 -36
133 72 60
4 -138 -98

-108 127 20
-105 -1 -131
-3 -199 -103
-64 -162 188
-30 -66 193

Table 5.2: Test input data

−0.625 −0.25 −0.1875
−0.4375 −0.375 −0.25
−0.625 0 −0.9375

(a) 3x3 CNN Kernel

Expected Expected Simulated Equivalent % Error
CNN Output Count Count CNN Output

-172.9 347 352 -150 13.3
-248.8 331 334 -234 5.8
-132 356 358 -121.9 7.7
-171.9 347 350 -159.4 7.3
14.6 387 387 14.1 3.4
10.8 386 387 14.1 29.3
233.4 434 431 220.3 5.6
209.5 429 425 192.2 8.3
55.9 396 397 60.9 9.1
-49.5 373 373 -51.6 4.2

(b) Comparison of expected and achieved CNN output

Table 5.3: ∆Σ MAC based CNN Test 1 results
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0.5 −0.375 0.125
0.5625 0.875 0.75
−0.1875 0.3125 0.6875

(a) 3x3 CNN Kernel

Expected Expected Simulated Equivalent % Error
CNN Output Count Count CNN Output

142.9 414 412 131.2 8.1
78.7 401 401 79.7 1.3
191.0 425 424 187.5 1.8
-58.5 372 372 -56.2 3.8
113.7 408 407 107.8 5.2
-71.3 369 370 -65.6 8
36.2 392 390 28.1 22.2
-389.7 301 305 -370.3 5
-230.9 335 341 -201.6 12.7
141.2 414 401 79.7 43.6

(b) Comparison of expected and achieved CNN output

Table 5.4: ∆Σ MAC based CNN Test 2 results

5.3 Digital Backend

All digital blocks have veen implemented as functional modules in Verilog-A.

5.3.1 ReLU

Figure 5.27: ReLU symbol
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5.3.2 Max Pooling

Figure 5.28: Max-Pooling symbol

5.3.3 Fully connected layer

Figure 5.29: Fully connected layer symbol
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Conclusion & Future Work

A novel voice activity detector has been proposed which performs acoustic
feature extraction in the analog domain and neural network based classifica-
tion in the mixed-signal and digital domains. All the analog and mixed-signal
blocks were designed up to the schematic level. The digital blocks were im-
plemented as functional modules in Verilog-A. Transistor level simulations of
individual circuit blocks were carried out to validate their behavior and en-
sure that they meet all the specifications imposed by the system architecture.

The entire acoustic feature extractor was tested with two different audio
inputs. The features extracted by the AFE were compared with the corre-
sponding ideal features. For both the cases, it was observed that the AFE
generated mel-spectrogram shows a good resemblance with the ideal mel-
spectrogram.

The ∆Σ MAC based CNN implementation was tested with a 12x3 ran-
dom input image and two different CNN kernels. The simulation results
showed a good overall match between expected and actual count values. Ac-
curacy improvements, if necessary, can be achieved by increasing the number
of clock cycles per MAC operation.

Future work includes:

1. Optimizing individual circuit blocks to minimize power consumption

2. Designing the clocking circuits

3. Improving the accuracy of ∆Σ MAC

4. Layout of the VAD and post-layout simulations
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5. Building a software model of the AFE for training data generation

6. Training the VAD using the feature dataset generated by the software
model of AFE

7. Characterizing the VAD - power, speech / non-speech hit rate

8. Exploring alternate ML algorithms for VADs

9. Exploring in-memory computing architectures and their utility in VADs

10. Applying ideas presented in this work to other edge AI systems
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